Saturday, November 30, 2024
디지털 학습과정에서의 심리 상태 이해를 위한 빅데이터 활용
Wednesday, November 20, 2024
2024년 제4회 학습과학연구소 세미나 - 이진경 연구교수님 디지털페노타이핑 강연
다음에도 스누코 샌드위치.. 해주세용...👍👍⭐ |
Saturday, November 16, 2024
10월 24일 오픈세미나 인간-AI 협력 2차년도 연구 공유
인간과 AI의 상호작용은 점점 더 많은 분야에서 중요한 역할을 하고 있습니다. AI는 인간의 작업을 보조하면서 학습과 업무의 효율성을 높이고, 의사결정 과정을 개선하는 데 기여합니다. 이러한 인간과 AI의 관계는 단순히 기술적 관점에서만 중요한 것이 아니라, 상호작용과 같은 행동적인 관점에서 보는 것도 중요한데요.
오늘은 김혜은 선생님께서 TELD 연구실의 주 관심사 중 하나인 인간과 AI의 협력과 관련된 2차년도 프로젝트가 어떻게 진행되었는지 공유해주셨습니다. 인간 AI 협력 2차년도 프로젝트의 목적은 인간-AI 협력 역량을 측정하는 수행평가 도구 개발이 주 목적이었습니다. 인공지능 사용 경험이 있는 대학생 또는 대학원생 32명을 모집하여 설문, 과제 수행, 면담을 진행하였습니다. 과제 같은 경우 ChatGPT와 협력하여 논증적 글쓰기를 작성하는 것이었는데 글쓰기 주제에 따라 단순한 주제와 복잡한 주제로 구분되었습니다. 아래 화면이 실험 참여자들이 보는 과제 화면이었습니다.
인간-AI 협력 역량 수행평가 도구 개발을 위해 다음과 같이 두가지 프로세스가 진행되었습니다. 첫째, 글쓰기 과제 수행 장면을 화면 녹화하여 인간이 비디오 분석을 진행하며 코딩하는 것과 서버에 수집되는 로그 데이터를 python 코드 전처리를 통해 코딩하는 것의 차이점을 비교하였습니다. 둘째, 어떤 행동이 과연 인간-AI 협력을 나타내는 행동인지 선행 이론들과 참여자들의 행동 관찰을 통해 범주화하고 타당화 작업을 거쳐 행동지표를 도출하였습니다.
또한 참여자들의 ChatGPT와의 글쓰기를 관찰하며 상호작용 행동 군집 분석을 추가적으로 실시하였습니다. 가설이 미리 정해지지 않은 탐색 연구였기 때문에 유의미한 패턴과 시사점을 도출하기 위해 다양한 변수들을 대입해가며 고민이 필요했습니다.
분석에 참여하신 박사 과정, 석사 과정 선생님들께서 SPSS, JAMOVI, R, AMOS 등 다양한 통계 도구를 써가며 각 도구의 장단점을 공유해주셨는데 앞으로의 연구 진행에 현실적인 도움이 되었습니다. SPSS 같은 경우 사용이 직관적이지만 프로그램이 무겁고 학교망을 벗어나면 무료 사용이 불가능하다는 단점이 있었습니다. JAMOVI도 직관적인 사용이 장점이었지만 SPSS에서는 가능한 엑셀에 표로 내보내기 기능이 없어서 불편하다는 단점이 있었습니다. R은 사용자에 따라 다양한 분석, 시각화가 가능하지만 코드를 짜야한다는 이유 때문에 ChatGPT나 Claude의 도움을 받아야 한다고 전해주셨습니다.
밝은 표정으로 위 내용들을 공유해주셨지만 선생님들께서 연구를 위해 얼마나 고생하셨는지 알게 되어 존경심이 절로 우러러 나오는 순간이었습니다.
종합적으로 이번 인간-AI 협력 2차년도 연구를 진행하며 아쉬웠던 점도 공유를 해주셨습니다. 더 좋은 연구 결과를 위해서 실험 참여자 수가 더 50명 이상으로 더 많았으면 좋았겠다라는 점, 연구 시작 전에 충분한 양과 질의 문헌 검토가 선행되어야 한다는 점, 코딩스킴과 관련해서 전문가 타당화를 받아야 한다는 점 등이 있었습니다.
인간-AI 협력 연구는 3차년도 연구로 이어서 진행이 됩니다. 3차년도 연구는 2차년도에 개발된 수행평가 도구에 기반하여 인간 협력 역량을 위한 맞춤형 수업모형을 개발하는 것입니다. 수업모형 개발과 효과 검증을 위해 설계기반연구 방법(DBR, Design based research)을 적용할 계획입니다. 실험실에서만 진행되었던 연구가 실제 교육 현장에서 실질적으로 적용된다는 점에서 큰 의미가 있는 것 같습니다. 3차년도 연구도 많이 기대해주시기 바라겠습니다 :)
Sunday, November 3, 2024
10월 30일 TELD 디자인 세미나: EEG 전처리 및 분석
인간의 학습 과정을 깊이 이해하려면 무엇을 들여다봐야 할까요? 바로 ‘뇌’입니다.
EEG(Electroencephalogram)는 뇌전도(뇌에 흐르는 전류)를 측정하는 방법으로, 간단한 착용만으로 비침습적으로 뇌 신호를 수집할 수 있다는 장점 덕분에 학습과 관련된 연구에서 자주 활용되고 있는데요. 학습과학연구소 뇌기반학습센터에서는 지난 9월 BrainProducts사의 EEG 장비를 새로 도입하여 최대 64채널의 정밀한 뇌파 데이터를 수집하고 분석할 준비를 마쳤습니다. 하지만 EEG의 원리나 분석 과정은 아직 생소하게 느껴지실 텐데요. 지난 10월 30일 TELD 세미나에서는 신부경 선생님께서 EEG에 대한 전반적인 설명과 함께 데이터 전처리 및 기초 분석 방법을 소개해 주셨습니다.
EEG는 전극을 통해 뉴런의 활성화를 포착하는 방법입니다. ms 단위로 측정하여 시간 해상도가 높다는 장점이 있지만, 공간 해상도는 낮은 편이라고 해요.
EEG 분석은 크게 두 종류로 나눌 수 있다고 하는데요. 첫 번째는 ERP(event-related potential, 사건관련전위) 분석입니다. ERP 분석은 특정 시점에서의 전위 차이를 확인하는 방식으로, 통제 조건이 매우 중요합니다. 통제 조건의 뇌파로 실험 조건의 뇌파를 뺀 다음, 두 개 실험 조건 간 대조를 하기 때문인데요. 파형이 positive인지 negative인지, 파형의 peak가 어디에(어느 시점에) 나타났는지에 따라 이름을 붙인다고 합니다(e.g. P300, N400). 한편 Time-frequency analysis(시간-주파수 분석)은 특정 시점에 주목하는 게 아니라 일정 시간 동안 주파수의 강도 또는 synchronization이 어떻게 변하는지를 분석하는 방법입니다.
뇌파 중 학습과 연결지어 볼 수 있는 것들에는 어떤 것들이 있을까요? 이 또한 EEG 분석 방법에 따라 나누어 살펴볼 수 있는데요. 먼저 ERP(사건관련전위) 방식으로 수행된 연구 결과들에 따르면, 주의집중과 관련하여 나타나는 뇌파 파형은 P3a, P3b, P300, 언어적 불일치와 관련해서는 P600(문법), N400(의미) 등이 있습니다. 이밖에도 오류나 피드백, 정서와 관련해서도 특정한 파형이 발견된다고 하네요. 시간-주파수 분석 연구에 따르면, 주파수가 30-60Hz인 Gamma wave가 학습·기억과의 관련성이 높다고 합니다.
EEG 연구에서 가장 중요하면서도 고단한 과정이 있다면 무엇일까요? 바로 EEG 전처리 단계라고 하는데요. 신부경 선생님께서는 BrainVision Analyzer를 활용한 전처리 과정과 MATLAB과 EEGLAB을 활용한 전처리 과정을 각각 시연해 주셨습니다. 블로그에 자세한 과정을 모두 글로 옮기기는 어렵지만, 인터페이스가 생각보다 직관적이라 한 단계씩 차근차근 공부하면 따라갈 수 있겠다는 생각이 들었습니다. 이렇게 전처리 시연이 끝난 뒤에는 구체적인 코드 예시와 함께 MATLAB의 Fieldtrip으로 Time-frequency 데이터를 분석하는 방법에 대해서도 설명해주셨습니다.
조영환 교수님께서는 EEG 장비가 연구실 차원에서 구비되어 있다는 점이 연구자로서 큰 기회이자 메리트라는 점을 강조하셨습니다. 다가올 겨울방학에 추가적인 EEG 워크숍이 예정돼 있다고 하니, 뇌기반학습 연구에 매력을 느끼는 분들의 많은 관심 부탁드려요!