강원대학교 AI융합학과 임정욱 교수님께서 디지털 학습 과정에서의 심리 상태 이해를 위한 빅데이터 활용을 주제로 세미나 특강을 해주시러 춘천에서 서울까지 와주셨습니다! 임정욱 교수님도 서울대에서 대학원을 다니면서 공부를 하셔서 그런지 굉장히 기쁜 마음으로 이번 강연을 하러 왔다고 말씀해주셨습니다.
교수님께서 설명해주신 심리 상태에 대한 연구는 최근 학습과학에서도 핫한 키워드입니다. 정서와 같은 심리 상태는 맥락에 따라 변화하며 학생들의 학업에 큰 영향을 미치기 때문입니다. 학생들이 학습 상황에서 느끼는 심리 상태를 정확하게 파악하고 적절한 처방을 제공할 수 있다면 학습에 어려움을 느끼는 학생들을 더 잘 도울 수 있겠죠?
심리 상태 분석을 위해 '궤적 데이터'를 활용한 연구를 소개해주셨는데 새롭게 접해본 데이터 형식이어서 흥미롭게 들을 수 있었습니다. 궤적데이터란 아래 사진처럼 사용자가 터치스크린 장치에서 터치 제스처를 사용하거나 컴퓨터에서 마우스를 사용하여 인터페이스를 조작할 때 생성되는 이동 경로를 뜻합니다. 심리학, 경영학 등 다양한 분야에서는 이 궤적데이터를 통해 의사결정 상황에서 느끼는 심리적 어려움 정도를 이해할 수 있다고 합니다.
교수님께서 진행하신 연구는 교육용 앱에서 수집한 터치 인터렉션의 궤적 데이터를 활용하여 학습 과정 중 학생들의 문제 풀이 상황에서 느끼는 심리적 어려움을 이해하는 것이었습니다. 더 자세히는, 의사결정 상황을 이해하기 위해 학생이 교육용 앱에서 정답 입력 시 발생하는 궤적 데이터를 분석한 것입니다. 또한 궤적 데이터를 여러 유형으로 나누고 선행 연구를 바탕으로 각각이 어떤 심리 상태를 나타내는지 구분하고자 하였습니다. 예를 들어 PSD1 유형의 궤적데이터는 학생이 문제풀이 결과에 대해 걱정할 때 발생하는 의사결정 어려움을 나타내고, PSD2 유형은 정답이 무엇인지 혼동할 때 발생하는 의사결정의 어려움을 나타냄을 연구 결과로 밝혀내셨습니다.
이 연구는 여기서 더 나아가 PSD를 이용하여 학습 과정과 관련된 추측 행동(guessing behavior) 및 학습 결과와 관련된 학업 성취와의 관련성을 살펴보았습니다. 상관 분석 결과, 두 가지 PSD는 모두 추측 행동과 부정적인 상관관계를
보인 반면,학업 성취와는 긍정적인 상관관계를 보였습니다.
PSD를 예측에 사용한 기계학습 모델 분석의 경우, baseline 모델에 비해 통계적으로
유의한 예측 성능 향상이 나타남을 확인하였습니다. 이는 궤적 데이터를 분석하여 PSD를 파악하는 것은 학생의 의사결정 어려움에 대한
이해를 도울 수 있다는 점에서 맞춤형 진단 및 개입이 가능해졌다는 것을 의미합니다.
새로운 데이터로부터 PSD를 계산하는 것이 디지털 환경에서의 학습을
이해하는 데 도움이 된다는 것을 통해 학습과학 연구에서 접목할 점이 많다는 것을 느꼈습니다. 특히 내년에 단계적으로 도입될 인공지능 디지털 교과서(AIDT)에서 이러한 궤적데이터를 사용한 연구가 가능해진다면 집중력 분산, 정서 고려 미흡 등 AIDT 사용에서 우려되는 점들을 효과적으로 완화시킬 수 있을 것으로 기대됩니다.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.